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Abstract. The critical behaviour of an k ing  model with competing first- and third-nearest- 
neighbour interactions (‘biaxial next-nearest-neighbour Ising’ or ‘BNNNI’  model) on the 
square lattice is investigated by finite lattice methods. In the ferromagnetic region, the 
phase boundary is located with an accuracy at least equal to that of alternative methods. 
In the antiphase region, distinctive structure in finite lattice estimators is found over an 
extended temperature range. However, the nature of the transition remains unclear. 

1. Introduction 

Systems with competing interactions are now known to be capable of yielding rich 
and complex critical behaviour. Ising systems with competing ferromagnetic and 
antiferromagnetic interactions can exhibit a rich variety of ordered phases at low 
temperatures, including modulated phases (Selke 1984). The nature of the phase 
transition can also vary quite dramatically, with the occurrence, in particular cases, of 
non-universal behaviour, first-order transitions and multicritical points. 

In this paper we report on a finite lattice study of the square lattice Ising model 
with first- and third-nearest-neighbour interactions, described in the preceding paper 
(Oitmaa and Velgakis 1987). The model is described by the Hamiltonian ( s i  = *l) 

where the summations run over nearest- and next-nearest-neighbour pairs in both axial 
directions, respectively. Without loss of generality, we restrict attention to ferromag- 
netic nearest-neighbour interactions (J > 0). In two dimensions, this model is the 
isotropic version of the ANNNI model discussed by Homreich er a1 (1979) and Selke 
and Fisher (1980). We choose to call the model the ‘biaxial next-nearest-neighbour 
Ising’ or ‘BNNNI’ model. 

Depending on the values of the interaction parameters, J and J‘, the Hamiltonian 
(1) has three basic types of ground state. These are the ferromagnetic ( F), antiferromag- 
netic (AF) and ‘antiphase’ (AP) states, shown in figure l (a ) .  Three of the degenerate 
antiphase states are shown in figure l (b) .  In each case the (2,2) antiphase state of 
the ANNNI model is present along both axial directions. The ‘chessboard’ state has an 
eightfold degeneracy while the ‘staircase’ configurations are each fourfold degenerate. 

0305-4470/87/061507 + 13$02.50 @ 1987 IOP Publishing Ltd 1507 
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Figure 1. ( a )  Possible ground states of Hamiltonian (1) as a function of J and J’: F 
ferromagnetic, AF antiferromagnetic, AP antiphase ordered. ( b )  Three of the possible 
antiphase ground states. The top figure represents a chessboard configuration while the 
remaining two figures are both staircase configurations. Here open and shaded squares 
represent up and down spins. 

The transition from the ferromagnetic ground state is expected to be a universal 
two-dimensional Ising transition. For J‘ < - J / 2  the nature of the transition, or sequence 
of transitions from the commensurately modulated chessboard configuration to the 
high-temperature disordered phase, is uncertain. Early Monte Carlo work (Hornreich 
et a1 1979, Selke and Fisher 1980) indicated a transition from the commensurate phase 
to an incommensurate phase followed by a second transition to the disordered phase, 
this transition presumably being of Kosterlitz-Thouless type. However, the more recent 
Monte Carlo study of Landau and Binder (1985) suggests that there is no intermediate 
phase. Rather, the commensurate and disordered phases are separated by a single 
first-order transition. The series analysis of Oitmaa and Velgakis, in the preceding 
paper, tends to support the picture of two transitions, although the evidence is far 
from conclusive. 

To explore the nature of the transitions from the ferromagnetic and antiphase states 
by a different technique and to hopefully resolve the above conflict we have applied 
‘phenomenological renormalisation’ (Nightingale 1976). (For recent reviews see Night- 
ingale (1982) and Barber (1983).) Our results for the ferromagnetic transition agree 
with those of the previous studies. Unfortunately, our results for the case with 
third-nearest neighbours sufficiently strongly antiferromagnetic (the transition from 
the chessboard ground state) are inconclusive and give no definite support for either 
scenario. 

The paper is arranged as follows. In § 2 we write down the transfer matrix and 
discuss the nature of the leading eigenvalues. A detailed discussion of the transition 
from the ferromagnetic state is presented in § 3. In § 4 we examine the nature of the 
transition in the antiphase region and concluding remarks are made in 0 5. 

2. The method 

The method of ‘phenomenological renormalisation’ is based on computation from the 
appropriate transfer matrices, of the correlation length for a sequence of m x CO strips, 
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followed by a scaling analysis. This approach has proven to be highly successful for 
a variety of two-dimensional systems (Nightingale 1982, Barber 1983). 

In the present study the most convenient choice of strips is in the diagonal direction 
as shown in figure 2, where the successive 'rows' have a zig-zag form. This choice has 
two advantages: firstly, only neighbouring rows are coupled by the interactions, and 
secondly, the natural modulation direction lies parallel to the strip direction. 

Figure 2. Diagonal rows of spins s and t on the square lattice used to define the transfer 
matrix T(s ,  t )  on a strip of width m. 

If the spin configurations of two adjacent rows are specified by s = (sl, s2, . . . , s,) 

(2) 

and t = ( t , ,  t 2 , .  . . , t,) then the 2"' x 2"' transfer matrix T(s ,  t) can be written as 

T(s ,  f )  = cpO(S)Cpl(S, t ) c p 2 ( S ,  f )  

where 

with K = J /  kT, K '  = J' /kT.  Periodic boundary conditions between edges of the strip 
are assumed implicitly in (2) and this requires that the strip width, m, is even. In 
addition, for K ' < - K / 2 ,  m must be a multiple of four to incorporate the possible 
antiphase states. 

For a specified choice of the coupling constants K ,  K ', we have computed the lead- 
ing eigenvalues of the transfer matrix by two methods. The first approach was to use 
translational symmetry along the rows, and spin reversal symmetry to construct a set 
of symmetrised states which block diagonalised the transfer matrix. It is in fact only 
necessary to consider two sectors, that which is invariant under both translations and 
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spin reversal and that which is invariant under translations but changes sign under 
spin reversal. The dominant eigenvalue A,, is contained in the first sector, while the 
latter sector contains the first subdominant eigenvalue A l .  Using this approach the 
largest strip considered was of width m = 12, giving matrices of size 356 x 356 and 
344 x 344. The second approach was to factor the full 2"' x 2" transfer matrix into a 
product of sparse matrices (Nightingale 1979, Batchelor 1986). Some details of the 
factorisation are given in the appendix. This technique enabled us to compute the 
leading eigenvalues for m = 16, which was necessary for investigation of the transition 
for a < -t. 

To find the dominant eigenvalues in each sector, we used the power algorithm as 
modified by Faddeev and Faddeeva (1963) to allow for the dominant eigenvalue being 
a complex conjugate pair. 

The nature of the leading eigenvalues Ao,  A , ,  A 2  ( A o >  I A l 1 2 1 A 2 1 . .  . )  is shown 
schematically in figure 3 as a function of the coupling constants K, K'. We note four 
points. 

(i) The dominant eigenvalue A. is everywhere real, positive and non-degenerate. 
(ii) For a given K '  all eigenvalues are symmetric in K. For A. this reflects the fact 

that the free energy is an even function of K ; for A I it is a consequence of the diagonal 
direction of the strip-the diagonal correlations are unchanged on changing the sign 
of K. 

Figure 3. Schematic illustration of the nature of the leading eigenvalues of the transfer 
matrix as a function of K and K ' .  

(iii) For K ' >  0, and for part of the region K '  < 0, the subdominant eigenvalue A I  
is real, positive and non-degenerate. In the remainder of the region K'<O, separated 
from the previous part by a 'disorder line', the subdominant eigenvalue is a complex 
conjugate pair with negative real part. 

(iv) Along the axis K =0,  the dominant eigenvalue is symmetric in K '  and the 
subdominant eigenvalue is real and doubly degenerate. In this limit the model consists 
of four independent, interpenetrating, lattices with nearest-neighbour coupling K'. 
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The inverse correlation length, which describes the decay of correlations in the 
infinite direction of the strip, is obtained as 

tml =ln(Ao/lA1I) (4) 

and the finite-size scaling assumption (Nightingale 1976, Barber 1983) is that, at 
criticality, this scales inversely with the width of the strip. Thus the equation 

m&,’(K, K ’ )  = m’t;’(K, K ’ )  ( 5 )  

gives, for a sequence of values m, m’, a sequence of estimates of the critical point. 

the quantities (Domany and Kinzel 1981, Barber 1983) 
More generally, to allow for the possibility of anisotropic scaling, one considers 

and obtains estimates of the critical point from intersections of successive Y.  In regions 
where the correlations are oscillatory, the scaling behaviour of the modulation wave- 
vector can also yield useful information (Duxbury et a2 1984). The appropriate 
quantity is 

with 

and where qo is the characteristic wavevector of the ground state. 
We now proceed to describe and discuss our results. 

3. The ferromagnetic region 

In the ferromagnetic region (a > -0.5) a single Ising-like transition is expected and 
this is borne out by our results. In figure 4 ( a )  we show a plot of the quantities Ym,m-2 
(6) against temperature for the case a = -0.2. The curves clearly show the expected 
scaling behaviour with a common crossover point at k T / J  = 1.41. Furthermore the 
scaling appears to be isotropic, so that the phase boundary can be determined by 
solving the equation 

mt,’( K ,  a K )  = ( m  - 2)5i1-2( K, aK) (9) 
numerically, for a fixed a. The sequences of finite lattice estimates obtained in this 
way, for a =O S ,  0, -0.2, -0.4, are shown in table 1. In all cases, the estimates for 
m > 8  appear to be converging at a rate close to m-3 in accord with the expected 
convergence rate for an Ising system (Barber 1985). The extrapolated value listed in 
the table was obtained by fitting estimates from two successive lattice pairs to the form 
a + bm-3; the error bar being a (subjective) indication of the reliability of this extrapo- 
lation. 

The critical temperatures obtained in this way are in agreement with the Monte 
Carlo results of Landau and Binder (1985) and with the series estimates obtained in 
the preceding paper. However the transfer matrix method used here is able to handle 
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Figure4. The scaling estimators Y,,,,-2 and Zm,m-2 as functions of temperature for a = -0.2 
for the indicated values of m. ( a )  The correlation length estimator Ym,m-2. Successive 
curves cross at the finite lattice estimates of the transition temperature. (b)  Peaks in Ym,m-2 
at a higher temperature indicating the presence of a disorder point. ( c )  The wavevector 
estimator Zm,m-2. Successive curves cross at the finite lattice estimates of the disorder 
temperature. 

Table 1. Estimates of the critical temperature kTJJ, obtained from finite width strips. 

a 

m/ m' 0.5 0.0 -0.2 -0.4 

614 4.060 14 2.238 33 1.424 77 0.514 66 
816 4.059 58 2.256 96 1.420 13 0.505 14 

1018 4.093 61 2.263 19 1.416 19 0.498 52 
12/10 4.103 40 2.265 83 1.413 98 0.494 67 
14/12 4.109 67 2.267 12 1.412 75 0.492 37 
Extrapolation 4.120i0.0006 2.2691 50.0002 1.4105i0.0005 0.488i0.001 

exact = 2.269 18 . .  . 

the region near the multiphase point a = -0.5, where the series method is unsuccessful. 
The critical line is shown in figure 5 .  We also show the approximate phase boundary 
obtained by Hornreich et a1 (1979), using the method of Muller-Hartmann and Zittartz 
(1977), which gives 

2(1+2a)  
In( 1 +a)* k T / J  = 

Estimates of the correlation length exponent v can be obtained from finite lattice 
estimates of the quantities 

a 
w, = - 6" 

aT 
since standard scaling arguments imply that 
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Figure 5. The ferromagnetic phase boundary of the BNNNI model. Curves: (-) transition 
temperatures as determined from finite width strips, (- - -) the disorder line (see text) and 
(-.-) the approximation (10) of Hornreich et a1 (1979). 

These estimates are shown in table 2 and are clearly consistent with a limiting value 
of v = 1, confirming the universal nature of the transition throughout the ferromagnetic 
region. 

Most systems with competing interactions exhibit a disorder line (Stephenson 1970), 
which separates regions of monotonically decaying and oscillatory correlations in the 
paramagnetic phase. In the present case we have used two related methods to locate 
the disorder line. The crossover from monotonic to oscillatory decay of correlations 
corresponds to the merging of the second and third largest eigenvalues of the transfer 
matrix into a complex conjugate pair. Thus, for a given a, the disorder point corre- 
sponds to the K value at which these eigenvalues merge. This gives a rapidly converging 
sequence of estimates with increasing strip width. 

The location of the disorder line can also be obtained from the quantities Y,,,, 
and Z,,,,, defined in the previous section. In this we follow the work of Beale et a1 
(1985), who used this approach to locate the disorder line for the two-dimensional 
ANNNI model. For given a, the disorder line is expected to lead to a sharp peak in 
the Y,,,-z at the disorder temperature, and this is clearly seen in figure 4(b) for the 

Table 2. Estimates of the critical exponent U. 

a 

m / m '  0.5 0.0 -0.2 -0.4 

6/4 0.9908 1.039 1.107 1.575 

10/8 0.9968 1.013 1.024 1.096 
12/10 0.9974 1.009 1.013 1.041 
14/12 0.9986 1.007 1.007 1.014 

8 / 6  0.9952 1.02 1 1.048 1.229 
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case a = -0.2. However the height of the peak decreases rapidly for increasing strip 
width and it is more convenient to examine the quantities Zm,m-2. These are shown 
in figure 4(c) and are seen to scale at the disorder temperature. The location of the 
disorder line is shown in figure 5 .  

To conclude this section we briefly discuss the applicability of consequences of 
conformal invariance to the BNNNI model along the ferromagnetic critical line. 
Isotropic, translationally invariant systems with short-range interactions are believed 
to be conformally invariant at criticality. In two dimensions, this has a number of 
significant implications. (For a recent review see Cardy (1986).) In particular, for a 
transfer matrix of a strip of finite width m, conformal invariance predicts (Cardy 1984) 

and (Blote er a1 1986, Affleck 1986) 

a, TC 
(ii) so= lim (pfm-pfm)m2=-- 

a, 6 m - w  

where 

pfm = -In Ao/ m (15) 

is the free energy per site. In (13) and (14), a, and a, are respectively the units of 
length along and perpendicular to the strip direction and c is the conformal anomaly. 

In the present case, we have a, = J2 and a, = I /  J2 from the orientation of the strip 
(recall figure 2). Hence, on assuming that the ferromagnetic transition of the BNNNI 

model is Ising-like, so that c = f and 7 = a ,  we obtain the predictions 

So = ~ / 6  and Eo = T / 2 .  (16) 
Finite lattice estimates of So were obtained from successive strips using a simple 

two-point fit to -pfm as a linear function of l /m2. The resulting estimates against 
l /m are shown in figure 6(a) for a = O S ,  0, -0.2 and -0.4, where in each case we 

I 
, I  1 

14 12 10 8 6 14 12 10 8 6 
l l m  l l m  

Figure 6. Plots of ( a )  ( P f , - / 3 f , ) m 2  and ( b )  &/m against l / m  for a = -0.4, -0.2, 0 and 
0.5. The expected (universal) limits predicted by conformal invariance are shown by the 
broken line. 
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used the corresponding (central) estimate of the bulk critical temperature shown in 
table l (a) .  These estimates are not particularly sensitive to variations of the temperature 
within the errors quoted in table l ( a ) .  Clearly, the trend with increasing m is consistent 
with the expected limit for all a, although for a = -0.4 the approach to this limit is 
evidently quite slow. 

The corresponding trend in estimates of the quantities m&,' at the (estimated) bulk 
critical temperatures results in either over- or underestimation of the expected limit 
for eo .  This reflects on over- or underestimation of the bulk critical temperature and 
clearly assuming (13) could be used as a means of sharpening our estimates of T,.  A 
better test of (13) is obtained if mt,' is computed at the m / ( m  -2) estimate of the 
critical temperature. These quantities are plotted against l / m  in figure 6(b) and 
illustrate a clear trend towards the expected universal limit. 

4. The antiphase region 

The more interesting region of the phase diagram for the BNNNI model is the region 
a < -0.5, in which the ground state is the chessboard or staircase configuration (figure 
l (b)) .  We wish to distinguish between the two possible scenarios: 

(i)  two transitions with an intermediate incommensurately modulated phase (Selke 
and Fisher 1980); 

(ii) a single first-order transition (Landau and Binder 1985). 
A finite lattice method, using the quantities Y, and 2, (equations (6) and (7)) ,  

should in principle be able to locate and distinguish between commensurate, incom- 
mensurate and paramagnetic phases. 

For the chiral clock model (Duxbury er al 1984) and the ANNNI model (Beale et 
al 1985) it is found that Y, does not scale at the commensurate to incommensurate 
phase boundary, but the quantity 2, does. However Y, does scale at the higher- 
temperature incommensurate to paramagnetic phase boundary. Thus the presence of 
two transitions, separated by an incommensurate phase, is indicated by the scaling of 
Y, and 2, at two distinct temperatures. 

In order to accommodate the possible antiphase states for the BNNNI model it is 
necessary to choose strips whose width is a multiple of four. In figures 7 and 8 we 
show plots of Ym,m--4 and Zm,m-4 as functions of temperature, for the two cases a = -0.75 
and a = -1.0. We also show in these figures the Monte Carlo (Landau and Binder 
1985) and series (Oitmaa and Velgakis 1987) estimates of the transition temperature. 
In both cases the Y functions show behaviour quite different from the ferromagnetic 
region (cf figure 4(a)). There is some indication of scaling at a temperature slightly 
below the Monte Carlo estimate, followed by a loop and then a rapid decrease in Y. 
From the m = 8 curve it is tempting to conclude that the Y function is developing a 
flat region of finite extent, indicative of an incommensurate phase with an algebraic 
decay of correlations. However the larger m results destroy this viewpoint and, 
surprisingly, the loop appears to become more pronounced for larger m. The peak in 
Y, occurs near the series estimate of a transition temperature. 

There is some ambiguity in the definition of the 2, functions in the antiphase 
region. The chessboard ground state and one of the staircase structures clearly have 
a modulation wavelength of two 'rows', and hence a wavevector of qo = f. However, 
the other staircase structure is fully periodic in the direction of the strip and hence 
would have a qo=O.  Since the chessboard phase is dominant at finite temperatures, 
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Figurr 7. The scaling estimators, Ym,m-d and Zm,m-4, as functions of temperature for 
a = -0.75. ( a )  The correlation length estimator Ym,m-l. (b)  The wavevector estimator 
Zmsm-4. Also shown are the corresponding Monte Carlo and series estimates of the 
transition temperature. 
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Figure 8. Scaling estimators as a function of temperature for a = -1.0. ( a )  The correlation 
length estimator Ym,m-4. ( 6 )  The wavevector estimator Zm,m-4. Also shown are the 
corresponding Monte Carlo and series estimates. 

because of higher entropy, we use q o = i  in defining the Z,,, functions. For a = -0.75 
the 2, show a consistent scaling behaviour at a temperature slightly below the Monte 
Carlo estimate, as shown in figure 7 ( b ) .  Figure 8 ( b )  shows 2, for a = -1.0, and again 
there is an indication of scaling behaviour near the Monte Carlo estimate. In neither 
case is there any indication of scaling near the series estimate. 

As the antiferromagnetic interactions become stronger the behaviour of the Y, 
functions becomes more like the standard Ising case. In figure 9 we show these 
functions for a = -2.0. The curves for m = 8 and 12 suggest a single conventional 
(continuous) transition. However, the curve for m = 16 indicates the beginning of 
possible structures similar to that seen for larger values of a. 
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Figure 9. Scaling estimators as a function of temperature for a = -2.0. (a )  The correlation 
length estimator Ym,,,-.,. ( b )  The wavevector estimator Zm,m-l. Also shown are the 
corresponding Monte Carlo and series estimates. 

5. Conclusions 

We have carried out extensive studies of the biaxial next-nearest-neighbour Ising model 
using the well known technique of transfer matrix calculations for finite width strips 
and scaling arguments. The novel feature of our approach, namely the choice of strips 
in the diagonal direction with zig-zag rows, allows us to treat quite large strips with 
widths up to m = 16. 

Despite the large amount of data our analysis is inconclusive, at least in the most 
interesting part of the phase diagram. In the ferromagnetic region, we locate the phase 
boundary with an accuracy at least equal to the series results of the preceding paper 
and obtain clear evidence that the transition is an Ising transition. However in the 
antiphase region we are unable to decide in favour of two successive transitions or a 
single first-order transition. Interestingly we do find distinctive structures in finite 
lattice estimators at two different temperatures, or rather over an extended temperature 
range. This would explain why the series and Monte Carlo results find apparent 
transitions at two distinct temperatures. 

Clearly the true behaviour is quite subtle and a final resolution is not likely to be 
easy. 
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Appendix. Sparse matrix factorisation of the transfer matrix 

Each transfer matrix element between spin sets s and t in figure 2 can be written as 
a product of Boltzmann weights 

J Oitmaa, M T Batchelor and M N Barber 

m/2 

~ ( s  I t )  = n w(s2j-19 s2j t  s2j+1, f2j-29 t2j-13 t2j9 t2j+1, f2j+2) ( A l l  
j = 1  

where a typical face abcdefgh is shown in figure 10. For the BNNNI model, we define 
the weight associated with this face as 

w(a, b, c, d, e, f, g, h)=exp[K(ab+bc+af+cf)+K'(bd+ce+ag+bh)]. (A2) 

The sparse factorisation of T is achieved by the introduction of m/2 - 1 auxiliary sets 
of spins: 

u p  = {U;, . . . , up,,,} 

0 = { V I  9 . . ., u m + j l  

with p = 1,. . . , r where r = m/2 - 2. 
The transfer matrix elements in (Al )  can then be written as 

T ( s I t ) =  c A(slu1)B(u11u2) ... C(u'(u)D(ult) (A31 
{ U P ) , U  

where 
1 1  A(s I U') = ~ ( ~ 1 9  ~ 2 9  s 3  9 u!n+4, u m ,  u m + 1 ,  u!n+2, u!n+3) 

B(UP Iu4) = w(u4, UP, U:, 4 l - 1 ,  U:, u:+1, u:+2, u2+3) 

C(ur  I U) = w(u;, U;, U;, om-1 9 u m ,  Vm+l ,  um+2,  um+3) 

D ( u l t ) = w ( u 2 ,  u3, u 1 ,  fm-2, & - 1 ,  t m ,  t l ,  t2)S(u4,  t l ) - - . S ( u m + 3 ,  t m )  

x S(s1, ~ : ) S ( s 3 ,  U:) * * .  S ( s m ,  uk-1) 

x 6 ( u ? ,  u y ) 6 ( u $ ,  u$ )  * * * 8 ( u 5 + 3 ,  u i + l ) 6 ( u p , + 4 ,  U:+,) 

x 6(u ; ,  V , ) ~ ( U ; ,  ~ 2 )  * * * 6 ( u L + 3 9  u m + 1 ) 6 ( u L + 4 ,  um+3) 

(A4) 

('45) 

(A@ 

(A71 

in which q=p+1.  

Figure 10. Typical face abcdefgh on the square lattice, drawn diagonally, corresponding 
to the Boltzmann weight defined in (A2). 
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The final result from (A3) is 

T = CD. 

The storage requirements involved in the subsequent computation of the leading 
eigenvalues of T can be halved by use of spin reversal symmetry. 
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